概要
He-Cdレーザとは、ヘリウムとカドミウムをガスとして用いたガスレーザの一種です。紫外線(325 nm)や青色光(441.6 nm)を出力することができ、比較的安価でありながら高い出力を持つことから、科学研究や工業分野などで幅広く利用されています。
He-Cdレーザの原理は、ヘリウムガスを励起させてエネルギーを与え、そのエネルギーをカドミウム蒸気に伝えることでカドミウム原子を励起状態にします。そして、励起されたカドミウム原子が放出する光が共振器内で反射・増幅されることによって、レーザ光を発生させます。
He-Cdレーザは、波長が紫外線に近いため、顕微鏡や顕微探針、光学式デジタルディスク、蛍光分光法などの分野で利用されています。また、照明や医療機器などでも使用されており、近年ではレーザ加工分野でも活用されています。
原理
He-Cdレーザの原理は、ヘリウムとカドミウムをガスとして用いたガスレーザの一種で、以下のような過程でレーザ光を発生させます。
- ヘリウムガスを放電させて励起状態にすることで、ヘリウム原子にエネルギーを与えます。
- 励起されたヘリウム原子が、カドミウム原子と衝突してエネルギーを伝達し、カドミウム原子を励起状態にします。
- 励起されたカドミウム原子は、そのエネルギーを放出するために光を放出します。
- 光が反射鏡の間を通り、同じ波長の光と干渉することで、増幅されます。
- 最終的に、レーザ光が共振器から出射します。
応用
He-Cdレーザは、波長が紫外線や青色光に近いため、分光法や光学式デジタルディスク、医療機器などの分野で幅広く利用されています。また、比較的安価でありながら高い出力を持つため、研究分野や産業分野での利用が広がっています。
歴史
He-Cdレーザは、1960年代に開発されたガスレーザの一種です。当初は、光通信分野において、データ転送用の光源としての利用が期待されましたが、光ファイバーの発明によりその需要は減少しました。その後、分光法や医療機器などの分野で利用されるようになりました。
1967年、アメリカの物理学者であるW・J・アルバースハイマーは、He-Cdレーザの発光機構を研究し、レーザ光を紫外線領域まで拡張することに成功しました。その後、1970年代には、アメリカやドイツなどでHe-Cdレーザの商用化が進み、分光法や医療機器などの分野で幅広く利用されるようになりました。
1990年代以降は、He-Cdレーザの発光効率の向上や波長安定性の向上などが進み、光学式デジタルディスクや照明などの分野でも利用されるようになりました。しかし、He-Cdレーザの波長が紫外線に近いため、使用する際には適切な保護装置を備える必要があります。近年では、He-Cdレーザの代替技術として、半導体レーザや固体レーザなどが普及しています。
今後の展開
He-Cdレーザは、分光法や医療機器、光学式デジタルディスクなどの分野で幅広く利用されてきましたが、近年では代替技術の普及により、その需要は減少しています。
しかし、以下のような可能性があるとされています。
- 生体医療分野での利用:He-Cdレーザは、紫外線や青色光に近い波長を持ち、光散乱や吸収が少ないため、生体内部への浸透性が高いとされています。そのため、生体組織の切除や加熱、細胞の処理などに利用される可能性があります。
- 環境分野での利用:He-Cdレーザは、水中の微生物や有害物質の検出に利用されることがあります。さらに、He-Cdレーザを用いた光触媒によって、有害物質の分解や空気浄化が可能とされています。
- 研究分野での利用:He-Cdレーザは、比較的安価でありながら高い出力を持ち、幅広い波長領域をカバーすることができます。そのため、研究分野での利用が期待されています。
- 特殊な用途での利用:He-Cdレーザは、極低温下でも動作することができるため、量子コンピューターや量子通信などの分野で利用される可能性があります。
さいごに
He-Cdレーザは、強い紫外光を出せるため、非常に期待されたレーザでした。しかし、種類によっては毒性のあるカドミウムを使用しているため、環境に対する影響や取り扱いには注意が必要でした。また、代替技術の普及により、需要が減少しているという面もあります。今後、普及させていくには、メリットを最大限に活用できる応用先を模索する必要がありそうです。
0件のコメント